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Radiation transfer in highly scattering ceramics is described by a diffusion 
approximation based on the asymptotic relation of the radiant flux and the 
radiant energy density in material depth. In this approximation, a calculation of 
the effective absorption coefficient k and the radiation diffusion coefficient D is 
based on the measurement of normal-hemispherical transmission of specimens 
shaped as various-thickness disks. Taken into account are radiation field, two- 
dimensionality, and the radiation boundary reflection effect. The optical 
property measurements have been performed on the experimental apparatus 
based on an integrating sphere, a collimated radiation source, and a two- 
channel data acquisition and processing system. Results of the measurements 
of k and D for the silica ceramic are given at room temperature. 
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1. I N T R O D U C T I O N  

A calculat ion of temperature  dis t r ibut ion and  heat transfer in highly scat- 
tering dielectrics (e.g., ceramics, powders, and  fibrous thermal  insulat ions)  
must  account  for a combined  energy transfer by radia t ion and  heat con- 
duction. Since the description of the radia t ion field for the above materials 
is difficult, the present approaches consist in finding either approximate  

solut ions or asymptotics that  correspond to an optically thick layer limit. 
Depend ing  on an inverse problem setup, various characteristics are 

used as material 's  volumetr ic  optical properties. In  the Gurev i t ch -  
Kube lka  M u n k  ( G K M )  theory [ 1 - 6 ]  (the two-flux theory for diffused 
i l luminat ion) ,  there are the K and  S parameters,  which represent, respec- 
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tively, diffuse absorption and diffuse back-scattering coefficients of a fiat 
layer of unity thickness. A similar concept is expressed by Duntley's 
parameters [7, 8] in the four-flux theory for a directed illumination. It 
implies that the angle dependence of the radiation intensity in positive and 
negative hemispheres are similar and do not depend on the coordinates. 

When an inverse problem is solved by the two- and four-flux methods 
within the transfer equation framework [-3, 8-13], the unknown optical 
parameters are absorption coefficient k and scattering coefficient fl, while 
the phase function is assumed to be known. However, the transfer equation 
is not valid for ceramic-type materials where distances between structural 
nonuniformities are comparable to the wavelength. 

As is shown in Ref. 14 GKM two-flux methods in the limit 

k + f l ) L  ~ ~ 

where co = f l / (k  + fi) is the albedo for scattering, and L is the thickness of 
the fiat layer, fail to produce asymptotically accurate results, which restricts 
their applicability to solve inverse problems. 

Diffusion methods [11, 14-18] are the most acceptable in describing 
the radiative transfer in optically thick layers of the scattering material. 
These methods are based on Fick's law for radiation diffusion which 
accurately correlates (asymptotically) radiation flux and radiant energy 
density in highly scattering material depth even for the cases when the 
transfer equation ceases to be valid. As shown in Ref. 18, application of the 
diffusion method for 

k D ~ 0  

L / D  --+ 

limit produces asymptotically accurate expressions for bihemispherical 
reflectance (Rh), transmittance (Ph), and hemispherical absorptance 
(emittance) (th) of a ceramic flat layer having thickness L and radiation 
diffusion coefficient D. 

2. T H E O R Y  O F  M E A S U R E M E N T S  

The present discussion is concerned only with highly diffuse low- 
absorption ceramics where conditions corresponding to the above-men- 
tioned diffusion, limit occurs at a distance within about 1 mm from the 
boundary. Normally, this corresponds to a rather wide spectral region 
between the electron absorption long-wave edge and the first fundamental 
atomic vibration band short-wave edge. 



Optical Properties of Ceramics 589 

Reflectance of the flat layer for a such class of materials shows weak 
dependence on k and D, so the method used to determine these parameters 
is based on transmittance measurements. The precision of the determina- 
tion of k based on experimental data for the transmittance is shown to be 
significantly dependent on whether optically thick [relative to attenuation 
coefficient Z =  (k/D) 1/2] specimens are used for the measurements. For 
weak-absorption materials k may have the value of several thousands of 
cm -1, which requires a flat layer thickness of several centimeters. The 
impossibility to realize an infinite flat layer of such thickness in performing 
transmittance measurements in an integrating sphere is evident. Conse- 
quently, the method used was based on the solution of an inverse problem 
of radiation diffusion for a disk-shaped specimen in the two-dimensional 
case. 

We refer to the energy fractions (relative to the external diffuse radia- 
tion incident on face 1) coming from faces 1 and 2 as cylindrical specimen 
bihemispherical reflectance (Rh)  and transmittance (Ph) ,  respectively. The 
fraction of energy coming from the lateral surface is referred to as lateral 
bihemispherical transmittance (Ph,  lat)- Then, using the solution for energy 
density in a cylinder given in Ref. 19, one obtains 

Rh(L, po)=l 16n2Dp~ ~ C~Zs[I+Zjh2+(1-Zjh2)-f}] (1) 
Pb j= l X2 

32n 2 Dpo ~ CjZsf s 
2__. Ph(L, po)-- Pb j=x ~-~ (2) 

: zo  

Ph, lat(L'po) -16n2~D E C J [ l + Z j h 2 + ( 1 - Z j h 2 ) f 2 - 2 f j ]  (3)  
PoPb j= 1 Zj 

eh( L, Po) -- 16n2kpop___~ ~ Cj Zjh2 (1 j=I~[I '~-LS~S + -Zjh2) f z -2 f j ]  (4) 

where 

J~(YJPb/Po) 
Cs = J~(Xj)(1 + h~tX2/p~)[(1 + Zjhx)(1 + Zjh2) - (1 - Zjhl)(1 - Zjh2)f~] 

f / =  e x p ( - Z s L ) ;  Z i = (Z 2 -~ X2/p2)'/2; 

hla t = 2 D ( 1  -+- rh, lat)/(1 --  rh, lat) , (5)  

P0 is the radius of the cylinder; Pb is the radius of the spot produced by the 
external diffuse radiation incident of face 1; hi = 2D(1 + rm)/(1 --rhi ) and rh~ 
( i=  1, 2) are the bihemispherical boundary internal reflection coefficients, 
where the value i =  1 relates to flat boundary 1 on which the radiation is 
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incident, and i = 2  relates to boundary 2; rh, l,t is the bihemispherical 
boundary internal reflection coefficient for the lateral surface; I/2 is the 
volume mean (allowing for porosity) refractive index squared; k is the 
effective absorption coefficient [20]; and Xj is the root of the following 
characteristic equation: 

Jo( X) - ( Xh,at/Po) JI(X) = 0 (6) 

where Jo(X) and J I ( X )  are the Bessel funct ionsof  zero and first orders, 
respectively. It may be noted that great variations in rhi values produce 
only small changes in k and D, which makes it sufficient to use a rather 
coarse reflection model. This is significant, since generally reflective charac- 
teristics are not well known (except for the polished-boundary case). In this 
paper the material-air flat boundary was represented as a set of air air and 
solid matrix-air fragmented boundaries. It is this model that was used to 
calculate the rhi coefficients. 

Equation (2) provides a theoretical basis 'for the method of deter- 
mining absorption and diffusion coefficients in a two-dimensional case. 
However, it also requires diffuse illumination of cylindrical specimen face 1, 
which is somewhat complicated in practice. This difficulty may be bypassed 
if the problem is reduced to the directional-hemispherical transmission 
using parallel falling radiation beam. Since the angular distribution of the 
transmitted radiation within the diffusion limit depends neither on the 
specimen radius and thickness nor on the direction if the incident radia- 
tion, bidirectional transmittance can be expressed by 

P(L, Po, f2, (2')= U((2) . P(L, Po, (2')/~ (7) 

where s is the point on the surface of a unity-radius positive hemisphere 
defined by location angle 0~ [0, rc/2] and azimuth q)E [0, 2re]; the third 
argument in the expression corresponds to the transmitted radiation 
direction; the fourth, to the incident; P(L, Po, f2) is the directional-hemi- 
spherical transmittance (i.e., transmission coefficient); and U(E2) is the 
transmission phase function normalized in accordance with the following 
equation: 

f( U((2) # d.Q = 7c (8) 
2rr) 

where # = cos 0. 
It is easy to demonstrate that normal hemispherical transmission coef- 

ficient P,,(L, Po) = P(L, Po,/~ = 1 ) is equal to 

P,,(L, Po)= UnPh(L, Po) (9) 
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where U,-= U(#= 1). The value of U(f2) is a function normalized by the 
condition of Eq. (8), while in the experiment a nonnormalized angular 
dependence ~(f~) may be measured, which is a radiation detector signal 
proportional to the energy coming from face 2 into the integrating sphere 
at various turns of the specimen relative to the incident collimated radia- 
tion. It is obvious that U(f2)= a~(f2), where, using Eq. (8), we find 

2~z) 

o r  

Un = ~ f  n/ I(2~z) g(~'2 ) [,.t dQ (10) 

where Un-~"  (#=  1). If the layer is azimuth-symmetrical (only an 
azimuthal symmetry of the specimen material and boundary 1 is required 
in practice), then U(~9)-- U(O), and 

U,=U,/(2 f~ ~s (11) 

Equations (2), (9), (10), and (11) are the working relations of the 
method that allow to substitute solution of an inverse radiation transfer 
problem for diffuse incident radiation to that for collimated incidence. 

3. E X P E R I M E N T A L  M E T H O D  A N D  A P P A R A T U S  

The first phase of the experiment is to determine the function ~'(f2) 
and to calculate U, on the basis of Eq. (11). The second phase involves 
measurement of transmittance of specimens with various thicknesses for 
normal incident collimated radiation and obtaining k and D values that, as 
far as the least-squares method (LSM) is concerned, are the best to 
approximate the experimental results by means of Eq. (9)-type functions. 

Measurements at both phases were performed with the same 
apparatus, using similar methods that differed only in specimen mounting 
techniques. Additional measurements related to the reference mounting 
were performed at the second phase. 

The apparatus is shown in Fig. 1. Collimated radiation of laser 11 
passes through disk modulator 12 and interference filter 13 and arrives at 
radiation dividing plate 14. The greater part of the radiation passes 
through the plate and is focused by lens 6 on specimen 7 mounted in 
holder 15. The specimen is positioned in the inlet of the integrating sphere 

840/'11/3-10 
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Fig. 1. The schematic of the apparatus. 

of 200-mm diameter. Multiple reflections of radiation transmitted by the 
test specimen produces an even radiation distribution on the sphere's inner 
surface. Detector 10 is screened with shield 8 or 18 from falling of straight 
radiation transmitted by the test specimen or reflected by the reference 
specimen 17. Its signal is amplified by lock-in amplifier 9. The smaller part 
of the laser radiation reflected from the radiation dividing plate arrives at 
the small integrating sphere 4 of 100-mm diameter. This sphere contains 
detector 3 whose signal is also amplified by lock-in amplifier 5. This scheme 
allows the computer to introduce a correction for small changes in the 
intensity of the laser radiation over the time period between measurements 
on the test specimen transmission and reflection of reference specimen 
positioned in the sphere's outlet. 

Main and auxiliary photometric channel signals are alternatively 
measured by digital voltmeter 2 connected to data acquisition and pro- 
cessing system 1 which includes a modular instrumentation system 
CAMAC and the computer. 

Since an acceptable precision of k determination may be obtained only 
if the specimen used has an appreciable (relative to attenuation) thickness, 
measurements of small transmission values reaching 10 4-10  - 5  a r e  

required. In this case reliability of the data obtained is provided by using 
lasers as high-power monochromatic radiation sources, selection and 
setting of the electronic circuits, and ensuring linearity of the detector and 
amplifier over. an entire range of the signals being measured. Since 
U(g?) = U(/~) does not depend on L, its measurement is carried out on one 
specimen of an arbitrary thickness. 

The function g'(#) had been determined from measurement of detector 
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signals proportional to the laser energy transmitted by the specimen when 
incidence angles were 0, 10, 20,...,80, 88 ~ A required angle was set by rota- 
tion of the integrating sphere around its vertical axis and by corresponding 
displacement of the sphere in the plane perpendicular to the laser beam. 

Measurement of normal-hemispherical transmittance involved com- 
parison of the signals obtained in alternative placement of the test specimen 
and the reference specimen in the inlet and outlet of the integrating sphere, 
respectively. An opal glass specimen was used as the reference for the 
visible spectrum; a calcium fluoride ceramics, for the infra-red. Reflection of 
the references was known with an uncertainty of +_ 1%. 

4. RESULTS 

The silica ceramic investigated was fabricated from a pure optical 
silica glass and had a porosity of 55.6 %. Grain sizes ranged from one to 
tens of micrometers. 

A specimen of L = 4 mm in thickness and Po = 15 mm in radius was 
used for the determination of the transmission phase function 0(/~). The 
thickness selection was conditioned by two considerations: first, the signal 
from the radiation detector must be sufficiently large; and second, the 
radiation coming from the lateral surface of the specimen must be 
significantly smaller than that coming from face 2 (the one-dimensionality 
requirement). 

The results obtained from transmission phase function measurements 
for the wavelengths 0.63 and 1.15 12m are satisfactorily approximated by 
the third-degree polynomials of the following form: 

O(#)/U ] = 0.306 + 1.001 12 - 0.358/22 + 0.051 /2 3 (for 2 = 0.63 12m) 

0(p)/O'n = 0.270 + 0.877 # - 0.138 #2 + 0.027/23 (for 2 =  1.15 #m) 

Figure 2 shows the U(12) as a function of angle 0 calculated in 
accordance with the above relations. 

Normal-hemispherical transmittance was measured on specimens with 
thicknesses ranging from 2 to 10 ram; several specimens of each thickness 
were used. Typical scatter of the transmittance value for specimens of the 
same thickness did not exceed 15 % and was primarily caused by specimen 
structural nonuniformity. The random error was several times smaller; this 
is attributed to several measurements performed for each specimen. 

Result processing carried out on the computer consisted of minimiza- 
tion of the function 

N Nm 
F(k,D)= ~ m m 2 [Pn(tm, k , O ) - P j m ]  2 (12) 

m = ]  j = l  
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Variation of the quantity U(#) as a func- 
tion of angle 0: curve 1, 2=0.63ym; curve 2, 
2= 1.15#m. 

where Pim are experimental transmittance values for a set of specimens of 
the thickness ( j e l ,  Nm); m is the specimen number in the group of 
specimens having the same thickness (m E 1, N); Wm is the measurement 
weight; and P,,(Lm, k, D) are calculated transmittance values. 

The values of k and D found by the above method for the silica 
ceramic investigated at room temperature, along with the confidence 
intervals for 95 % confidence probability, are as follows: 

k =  (1.2_ 0.3)10-2 cm-1; D = (8.7 + 0.8)10 4cm (2 = 0.63 #m) 

k = ( 7 . 9  0.5)10 3cm 1, D = ( 1 . 5 5 + 0 . 0 3 ) I 0  3cm ( 2 = 1 . 1 5 # m )  

It is important to know what k and D errors may be caused if one 
neglects angular dependence of directional-hemispherical transmission, i.e., 
if P ,  = Ph o r  U n = 1 is assumed. If the boundary reflection coefficients are 
not close to unity, the values of k and D may be shown to be asymptoti- 
cally inverse by proportional to U,. So the fact that U,=1 .23  
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(2 = 0.63 #m) and Un = 1.33 (2 = 1.15 #m) shows that a failure to account 
for angular dependence P(O) leads to errors in the values of k and D which 
are equal to 23 and 33 %, respectively. 

5. C O N C L U S I O N  

The method developed for the determination of highly scattering low- 
absorption materials' optical properties on the basis of diffusion 
approximation allows one to describe a radiation field even when the trans- 
fer equation is not valid. The optical properties of such materials have been 
described in terms of two coefficients: the radiation diffusion coefficient D 
and the effective absorption coefficient k. The first depends on porosity, 
sizes of pores, and refractive index of the material and on it does not 
change much as the temperature is increased. The second depends on 
temperature much more. 

In this paper we have presented results which were obtained at room 
temperature. However, the method may also be used at high temperatures. 

REFERENCES 

1. M. M. Gurevich, Trudy Gosudarstvennogo Opt. Inst. (Transactions of the State Optical 
Institute) 6(57):1.20 (1931). 

2. P. Kubelka and F. Munk, Z. Techn. Phys. 20:593 (1931). 
3. A. A. Gershun, Trudy Gosudarstvennogo Opt. Inst. (Transactions of the State Optical 

Institute) 11(99):43 (1936). 
4. J. C. Richmond, J. Res. NBS 67:212 (1963). 
5. W. A. Allen and A. J. Richardson, JOSA 58:1023 (1968). 
6. N. A. Voishvillo, Opt. Spectrosk. (Optics and Spectroscopy) 37:136 (1974). 
7. S. Q. Duntley, JOSA 32:61 (1942). 
8. P. S. Mudgett and L. W. Richards, Appl. Opt. 10:1458 (1971). 
9. S. G. Iliasov and V. V. Krasnikov, Inzhenerno-fiz. Z. (Physical Engineering Journal) 

23:267 (1972). 
10. S. G. Iliasov and V. V. Krasnikov, Fizicheskie osnovy infrakrasnogo oblucheniya pistchevyh 

productov (Physical Basics of Food IR Treatment) (Moscow, !978), pp. 86-111. 
11. A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino neodnorodnyh sredah (Wave 

propagation and Scattering in Random Media) (Moscow, 1981), Vol. 1, pp. 195-211. 
12. Z. A. Yasa and W. B. Jackson, N. M. Am. Appl. Op-t. 21:21 (1982). 
13. J. Reichman, Appl. Opt. 12:1811 (1973). 
14. V. A. Petrov and S. V. Stepanov, Izvest. SO AN SSSR Ser. Tech. Nauk (The USSR 

Academy of Sciences, Siberian Branch News, Application Science Series) 2(7):21 (1987). 
15. Yu. A. Tsirlin, L. E. Pargamanik, and A. P. Daich, Opt. Spectrosk. (Optics and 

Spectroscopy) 12:304 (1962). 
16. L. F. Gate, Appl. Opt. 13:236 (1974). 



596 Moiseev, Petrov, and Stepanov 

17. N. M. Bazhin and S. M. Baranov, Opt. Spectrosk. (Optics and Spectroscopy) 34:963 
(1973). 

18. S. V. Stepanov and M. A. Berkovsky, Teplofiz. Vysokih Temp. (Thermophysics of High 
Temperatures) 23:346 (1985). 

19. M. A. Berkovsky and V. A. Stepanov, Teplomassoobmen-Vll, VoL 2 (Institute of Mass and 
Heat Transfer, Minsk, 1984), pp. 30-34. 

20. S. V. Stepanov, Teplofiz. Vysokih Temp. (Thermophysics of High Temperatures) 25:180 
(1988). 


